欢迎访问bat365中文官方网官网!
  1. ENGLISH
  2. 中文
园艺系
当前位置: 学院首页 >> 师资队伍 >> 园艺系 >> 正文
吴强盛-教授

 

博士,教授(专技二级),博士生导师2020中国高被引学者,2020年湖北高校省级教学团队“园艺专业系列课程教学团队”负责人;湖北省高等学校优秀中青年科技创新团队“柑橘菌根生理和相关功能研究” 负责人,bat365中国在线平台官方网站根系生物学研究所所长。湖北省新世纪高层次人才工程第二层次人选;第四届“青年科学之星”;湖北省自然科学基金“杰出青年人才基金”获得者;湖北省优秀共产党员;荆州市十大杰出青年;荆州市青年岗位能手。

主要讲授园艺植物营养诊断、植物生理学等。2001,江西农业大学园艺专业本科毕业;2006,华中农业大学园艺林学学院果树专业学习,获博士学位2011.12bat365中文官方网官网教授;2014.12博士生导师。

֍研究领域和方向

主要研究植物菌根生物技术。重点方向:

[1]菌丝桥在植物间的信号传导作用和功能;

[2]菌根增强植物抗逆性的机理;

[3]菌根释放球囊霉素的机理及其相关功能;

[4]菌根改善植物根系构型的生理机制。

 

֍主持科研项目(第一主持人)

编号

来源

名称

执行年限

KFT202005

湿地生态与农业利用教育部工程研究中心2020年开放基金

AM真菌增强毛桃耐涝性的多胺调控机制解析(团队)-10

2020.7.1-2023.7.31

BXLBX0317

湖北省百校联百县高校服务乡村振兴科技支撑行动计划

菌根菌肥在油茶上的应用研究与示范

 

2021.7-2022.12

BXLBX0324

湖北省百校联百县高校服务乡村振兴科技支撑行动计划

柑橘菌根菌肥的田间应用及示范

2021.7-2022.12

202019

2020年度中国-中东欧国家高校联合教育项目(中国教育国际交流协会)

球囊霉素调控生长素影响枳生长的机制解析

2020.12-2022.12

SKLTOF20190105

茶树生物学与资源利用国家重点实验室开放基金项目

AM真菌促进茶树P吸收的机制研究-6

2019-2021

2018YFD1000300

国家重点研发计划

菌根调控柑橘抗旱性的生理和分子机制48万,果树应答水分和盐碱逆境的生物学基础与调控)

2018-2022

鄂农发【20181

2018年湖北省农业科技创新行动项目

柑橘菌根菌肥应用技术研究(20/年,以后5/年)

柑橘岗位科学家(特色水果生态高效栽培与采后处理

2018-2020

2018ZYYD045

中央引导地方科技发展专项资金项目

鄂西北核桃良种应用及丰产栽培技术推广与示范6万)

2018-2020

鄂农计发【201834

湖北省农业厅重大技术

园艺作物“三增三减”健康栽培与加工 (10万)

2018-2019

SKLTOF20160112

茶树生物学与资源利用国家重点实验室开放基金项目

菌根真菌调控茶树生长和根系发育的机制研究

2016-2018

T201604

湖北省高等学校优秀中青年科技创新团队计划项目

柑橘菌根生理和相关功能研究

2016~2018

31372017

国家自然科学基金

柑橘菌根根外菌丝释放球囊霉素相关土壤蛋白的特性及其相关功能研究

2014-2017

30800747

国家自然科学基金

柑橘丛枝菌根共生体与多胺的交互作用研究

2009-2011

211107

教育部科学技术研究重点项目

柑橘菌根释放球囊霉素的特点及其在碳代谢中的作用

2011-2014

2012FFA001

湖北省自然科学基金杰出青年人才基金

柑橘根际球囊霉素的相关功能研究

2013-2014


֍教学研究项目



2021-NLZX-YB60

中国学位与研究生教育学会农林学科工作委员会研究课题

“新农科背景下地方高校五结合培养园艺研究生创新能力的研究与实践

2021-2022

2018292

湖北省教育厅高等学校省级教学研究项目

园艺专业“六位一体”培养创新能力的研究与实践

2019-2021

2012260

湖北省教育厅高等学校省级教学研究项目

园艺专业“三明治教育培养模式的研究与实践

2012-2014

2009206

湖北省教育厅高等学校省级教学研究项目

园艺专业优秀创新人才培养途径和方法的探索与实践

2009-2011

֍SCI杂志编委

Editor of four SCI journals: Notulae Botanicae Horti Agrobotanici Cluj-Napoca; Biocell; Agriculture; Phyton-International Journal of Experimental Botany

Associate Editor of Chemical and Biological Technologies in Agriculture

Topics editor of Horticulturae

Review editor of Frontiers in Plant Science

 

֍教学科研奖

1吴强盛,刘乐承,邹英宁,饶贵珍,张义,王贵元. 园艺专业“三明治”教育培养模式的研究与实践. 湖北省高等学校教学成果奖二等奖. 编号:8296,2018-2-2

2何跃军、吴强盛、钟章成、欧 静、刘锦春. 喀斯特植物适应性的菌根调控机理及菌根化育苗技术. 贵州省科学技术进步奖三等奖(排名第22017J-3-46-2, 时间:2017-12-23

3吴强盛,刘乐承,邹英宁,饶贵珍,张义,王贵元. 园艺专业三明治教育培养模式的研究与实践. bat365中国在线平台官方网站教学成果奖二等奖. 2016.12

4吴强盛,王双,Srivastava AK. 菌根菌丝破坏诱导了枳株生长、根际周围球囊霉素相关土壤蛋白和土壤团聚体结构的改变. 荆州市自然科学优秀学术论文奖励一等奖. 编号:121004. 荆州市人民政府,2018-12

5】朱先灿、吴强盛、邹英宁、刘胜群、田春杰、宋凤斌、刘智蕾、徐洪文.丛枝菌根提高植物抗逆性的生理机制.吉林省自然科学奖二等奖. 2019Z20026. 吉林省科学技术奖励委员会. 2019-10-23

6吴强盛,张德健,邹英宁,邹华文,王晓玲,吴会会,刘春艳. 植物生理学实验指导(教材. bat365中国在线平台官方网站教学成果二等奖. 2020-9-1

7】园艺专业核心能力培养的研究与实践. 饶贵珍,刘乐乘,肖波,吴强盛,张义,刘丽平. bat365中国在线平台官方网站教学成果二等奖. 2020-9-1

 

 

֍专著

  1. Wu QS. Arbuscular mycorrhizas and stress tolerance of plants. Springer Nature Singapore Pte Ltd., 2017, p. 1-327

  2. Wu QS, Zhang DJ. Plant Growth Regulators (PGR): Types, Uses and Safety. NOVA Science Publishers, New York, 2020

  3. Wu QS, Zou YN, Zhang F, Shu B. An Introduction to Microorganisms. NOVA Science Publishers, New York , 2021

  4. Wu QS, Zou YN. Mycorrhizal Fungal Application in Citrus Plants. London, UK, Book Publisher International, pp. 1-65.

  5. Giri B, Prasad R, Wu QS, Varma A. 2019. Biofertilizers for Sustainable Agriculture. Springer Nature Switzerland AG

  6. 吴强盛主编. 邹英宁、邹华文副主编. 植物生理学实验指导. 北京:中国农业出版社,2018

  7. 吴强盛. 园艺植物丛枝菌根研究与应用. 科学出版社2010

 

֍国家发明专利(授权)

  1. 国家发明专利:一种观测丛枝菌根根外菌丝对水分吸收的方法. 吴强盛、邹英宁、黄咏明、倪秋丹. 专利号:ZL 2013 10667080.1,授权时间:201668

  2. 国家发明专利吴强盛,邹英宁,王双,池格格,刘春艳. 一种外源易提取球囊霉素土壤改良剂的制备方法及其使用方法. ZL201610504885.8,时间 2019-10-15

  3. 国家发明专利:吴强盛,邹英宁,谢苗苗,刘春艳,张艺灿. 一种促进风信子提前开花并延长花期的方法. 专利号:ZL 201611138583.X,授权时间:2020731

  4. 吴强盛,何家栋,邹英宁,刘春艳,张菲,谢苗苗. 一种土壤性状的对比检测方法. ZL 201810795951.0授权时间2020-11-06

  5. 吴强盛,何家栋,邹英宁,刘春艳,张德健,张菲. 一种调节柑橘脂肪酸不饱和的抗旱菌剂制备及应用方法. ZL 201811391639.1授权时间:2021-04-27

  6. 4-27

  7. 吴强盛,张德健,邹英宁. 一种促进虎杖种子快速发芽的方法. ZL 201910413078.9, 授权时间2021-6-18

     

    ֍技术规程

  8. 封海东,郭锐,周明,肖飞,张斌、张泽志,金善忠,李坤,司海倩,郭元平,秦光明,袁修华,周军,欧阳友香,刘贤荣,吴强盛. 2019年十堰市市级规程,虎杖种子育苗技术规程,DB4203/T 142-2019

  9. 虎杖栽培技术规程DB4203/T 187-20202020/9/10,第二

  10. 封海东、郭锐、穆森、周华平、周明、鲍江峰、刘大会、宗庆波、马毅平、葛一洪、吴强盛、张泽志、刘义梅、李坤、唐涛、张斌、段媛媛、王帆帆、石锐、韩明清. 中药材虎杖种子育苗技术规程. DB42/T 1719—2021. 湖北省地方标准

     

     

    ֍SCI收录论文(*通讯作者,3年)

    2021

  11. Yang L, Zou YN, Tian ZH, Wu QS*, Kuča K. 2021. Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Scientia Horticulturae, 277:109815

  12. Liu RC, Gao WQ, Srivastava AK, Zou YN, Kuča K, Hashem A, Abd_Allah EF and Wu QS* (2021) Differential effects of exogenous glomalin-related soil proteins on plant growth of trifoliate orange through regulating auxin changes. Front. Plant Sci. 12:745402. doi: 10.3389/fpls.2021.745402

  13. Meng L-L, Liu R-C, Yang L, Zou Y-N, Srivastava AK, Kuča K, Hashem A, Abd_Allah EF, Giri B, Wu Q-S*. The change in fatty acids and sugars reveals the association between trifoliate orange and endophytic fungi. Journal of Fungi, 2021, 7(9):716. https://doi.org/10.3390/jof7090716

  14. Zou Y-N, Zhang F, Srivastava AK, Wu Q-S* and Kuča K* (2021) Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. Front. Plant Sci. 11:600792. doi: 10.3389/fpls.2020.600792

  15. Cheng XF, Wu HH, Zou YN*, Wu QS*, Kuča K. 2021. Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. Plant Physiology and Biochemistry, 2021, 162:27-35

  16. Cheng HQ, Zou YN, Wu QS*, Kuča K*. Arbuscular mycorrhizal fungi alleviate drought stress in trifoliate orange by regulating H+-ATPase activity and gene expression. Front. Plant Sci. 12:659694. doi: 10.3389/fpls.2021.659694

  17. Cheng HQ, Giri B, Wu QS*, Zou YN, Kuča K. 2021. Arbuscular mycorrhizal fungi mitigate drought stress in citrus by modulating root microenvironment. Archives of Agronomy and Soil Science, doi:10.1080/03650340.2021.1878497

  18. Meng L-L, Liang S-M, Srivastava AK, Li Y, Liu C-Y, Zou Y-N, Kuča K, Hashem A, Fathi Abd_Allah E, Wu Q-S*. Easily extractable glomalin-related soil protein as foliar spray improves nutritional qualities of late ripening sweet oranges. Horticulturae, 2021, 7(8):228. https://doi.org/10.3390/horticulturae7080228

  19. Liu, R.-C.; Xiao, Z.-Y.; Hashem, A.; Abd_Allah, E.F.; Xu, Y.-J.; Wu, Q.-S*. Unraveling the interaction between arbuscular mycorrhizal fungi and Camellia plants. Horticulturae, 2021, 7, 322. https://doi.org/10.3390/horticulturae7090322

  20. Xie MM, Chen SM, Zou YN, Srivastava AK, Rahman MM, Wu QS*, Kuča K. Effects of Rhizophagus intraradices and Rhizobium trifolii on growth and N assimilation of white clover. Plant Growth Regul, 2021, 93:311-318 doi: 10.1007/s10725-020-00689-y.

  21. Liang SM, Zheng FL, Abd_Allah EF, Muthuramalingam P, Wu QS*, Hashem A*. 2021. Spatial changes of arbuscular mycorrhizal fungi in peach and their correlation with soil properties. Saudi Journal of Biological Sciences, 10.1016/j.sjbs.2021.07.024

  22. Tian L, Zou YN, Wu QS*, Kuča K. 2021. Mycorrhiza-induced plant defence responses in trifoliate orange infected by Phytophthora parasitica. Acta Physiologia Planturam 43:45 https://doi.org/10.1007/s11738-021-03216-2

  23. Huang GM, Srivastava AK, Zou YN, Wu QS*, Kuča K. 2021. Exploring arbuscular mycorrhizal symbiosis in wetland plants with a focus on human impacts. Symbiosis, 2021, 84:311-320. doi:10.1007/s13199-021-00770-8

  24. Shao YD, Hu XC, Wu QS*, Yang TY*, Srivastava AK, Zhang DJ, Gao XB, Kuča K. Mycorrhizas promote P acquisition of tea plants through changes in root morphology and P transporter gene expression. South African Journal of Botany, 2021, 137:455-462. https://doi.org/10.1016/j.sajb.2020.11.028

  25. Liu RC, Xiao ZY, Hashem A, Abd_Allah EF, Wu QS*. Mycorrhizal fungal diversity and its relationship with soil properties in Camellia oleifera. Agriculture, 2021, 11:470. https://doi.org/10.3390/agriculture11060470

  26. Cao JL, Shao YD, Zou YN, Wu QS*, Yang TY*, Kuča K. Inoculation with Clariodeoglomus etunicatum improves leaf food quality of tea exposed to P stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49(1):12166, doi:10.15835/nbha49112166

  27. Meng LL, Srivastava AK, Kuča K, Giri B, Rahman MM, Wu QS*. Interaction between earthworms and arbuscular mycorrhizal fungi in plants: a review. Phyton-International Journal of Experimental Botany, 2021, 90(3):687-699, doi:10.32604/phyton.2021.015427

  28. Zheng F.-L., Liang S.-M., Chu X.-N., Yang Y.-L., Wu Q.-S.* (2020): Mycorrhizal fungi enhance flooding tolerance of peach through inducing proline accumulation and improving root architecture. Plant, Soil and Environment, 66:624-631

  29. Cheng WJ, Xu YJ*, Huang GM, Rahman MM, Xiao ZY, Wu QS* (2020). Effects of five mycorrhizal fungi on biomass and leaf physiological activities of walnut. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4):2021-2031.

  30. Liu CY, Wang YJ, Wu QS*, Yang TY*, Kuča K (2020). Arbuscular mycorrhizal fungi improve the antioxidant capacity of tea (Camellia sinensis) seedlings under drought stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 1993-2005. https://doi.org/10.15835/nbha48412066

  31. Liang SM, Jiang DJ, Xie MM, Zou YN*, Wu QS*, Kuča K (2021). Physiological responses of mycorrhizal symbiosis to drought stress in white clover. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12209. https://doi.org/10.15835/nbha49112209

  32. Zou YN, Wu QS, Kuča K. 2021. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biology, 23(Suppl. 1):50-57

  33. Ma WY, Wu QS, Xu YJ, Kuča K. Exploring mycorrhizal fungi in walnut with a focus on physiological roles. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49(2):12363.

    2020

  34. Zhang F, Zou YN, Wu QS*, Kuča K. 2020. Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environmental and Experimental Botany, 171:103962.

  35. He JD, Chi GG, Zou YN, Shu B, Wu QS*, Srivastava AK, Kuča K. Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Applied Soil Ecology, 2020, 154:103592

  36. Ding YE, Fan QF, He JD, Wu HH, Zou YN*, Wu QS*, Kuča K. 2020. Effects of mycorrhizas on physiological performance and root TIPs expression in trifoliate orange under salt stress. Archives of Agronomy and Soil Science, 66(2):182-192

  37. He JD, Zou YN, Wu QS*, Kuča K. 2020. Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Scientia Horticulturae, 262:108745. doi://10.1016/j.scienta.2019.108745

  38. Liu CY, Zhang F, Zhang DJ, Zou YN, Shu B, Wu QS*. 2020. Transcriptome analysis reveals improved root hair growth in trifoliate orange seedlings by arbuscular mycorrhizal fungi. Plant Growth Regulation, 92:195-203 doi://10.1007/s10725-020-00630-3

  39. Meng LL, He JD, Zou YN, Wu QS*, Kuča K. (2020): Mycorrhiza-released glomalin-related soil protein fractions contribute to soil total nitrogen in trifoliate orange. Plant, Soil and Environment, 66: 183-189.

  40. Huang G.-M., Zou Y.-N., Wu Q.-S*., Xu Y.J.*, Kuča K. (2020): Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant, Soil and Environment, 66295-302

  41. Xie M.-M., Zou Y.-N., Wu Q.-S*., Zhang Z.Z., Kuča K. (2020): Single or dual inoculation of arbuscular mycorrhizal fungi and rhizobia regulates plant growth and nitrogen acquisition in white clover. Plant, Soil and Environment, 66287-294

  42. Gao WQ, Lu LH, Srivastava AK, Wu QS*, Kuča K. 2020. Effects of mycorrhizae on physiological responses and relevant gene expression of peach affected by replant disease. Agronomy, 10: 186, doi:10.3390/agronomy10020186

  43. Cheng HQ, Ding YE, Shu B, Zou YN, Wu QS*, Kuča K. 2020. Plant aquaporin responses to mycorrhizal symbiosis under abiotic stress. International Journal of Agriculture and Biology, 23: 786–794

  44. Xie MM, Zhang YC, Liu LP, Zou YN*, Wu QS*, Kuča K. (2019). Mycorrhiza regulates signal substance levels and pathogen defense gene expression to resist citrus canker. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4): 1161-1167. https://doi.org/10.15835/nbha47411561

  45. Yang L, Cao JL, Zou YN, Wu QS*, Kuča K. 2020. Piriformospora indica: a root endophytic fungus and its roles in plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48:1-13

  46. Ding YE, Huang WK, Shu B, Zou YN, Wu QS*, Kuča K. 2020. Identification and characterization of a circadian clock-associated preudo-response regulator 7 gene from trifoliate orange. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48:128-139

  47. Cheng S, Tian L, Zou YN*, Wu QS*, Kuča K, Bora P. 2020. Molecular responses of arbuscular mycorrhizal fungi in tolerating root rot of trifoliate orange. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2):558-571

  48. Xie MM, Wang Y, Li QS, Kuča K, Wu QS* (2020). A friendly-environmental strategy: application of arbuscular mycorrhizal fungi to ornamental plants for plant growth and garden landscape. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3)1100-1115. https://doi.org/10.15835/nbha48312055

  49. Wu QS, Gao WQ, Srivastava AK, Zhang F, Zou YN. 2020. Nutrient acquisition and fruit quality of Ponkan mandarin in response to AMF inoculation. Indian Journal of Agricultural Sciences, 90:1563-1567.

    2019

  50. Wu, Q.S., He, J.D., Srivastava, A.K., Zou, Y.N., Kuca, K., 2019. Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiology 39(7):1149-1158  doi:10.1093/treephys/tpz039.

  51. Zou YN, Wu HH, Giri B, Wu QS*, Kuca K. 2019. Mycorrhizal symbiosis down-regulates or does not change root aquaporin expression in trifoliate orange under drought stress. Plant Physiology and Biochemistry, 2019, 144:292-299

  52. Zhang YC, Zou YN, Liu LP, Wu QS*. Common mycorrhizal networks activate salicylic acid defense responses of trifoliate orange (Poncirus trifoliata). Journal of Integrative Plant Biology, 2019, 61(10):1099-1111   10.1111/jipb.12743

  53. He JD#, Dong T#, Wu HH, Zou YN*, Wu QS*, Kuca K. Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Scientia Horticulturae, 2019, 243:64-69

  54. Zhang F#, Wang P#, Zou YN, Wu QS*, Kuca K. 2019. Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Archives of Agronomy and Soil Science, 65:9, 1316-1330, DOI: 10.1080/03650340.2018.1563780

  55. Zhang DJ, Liu CY, Yang YJ, Wu QS*, Li YY*. Plant root hair growth in response to hormones. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47(2):278-281

  56. Lü LH, Srivastava AK, Shen YL, Wu QS*. A negative feedback regulation of peplanted soil microorganisms on plant growth and soil properties of peach. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47(1):255-261

  57. Zhang YC#, Xie MM#, Feng HD, Zhou M, Zhang ZZ, Liu CY, Wu QS* (2018). Common mycelium networks with Paraglomus occultum induce better plant growth and signal substance changes between trifoliate orange seedlings. Acta Scientiarum Polonorum - Hortorum Cultus, 17(6):95–104

  58. Gao WQ, Wang P, Wu QS*. Functions and application of glomalin-related soil proteins: A review. Sains Malaysiana, 2019, 48(1):111-119

  59. He JD, Li JL, Wu QS*. Effects of Rhizoglomus intraradices on plant growth and root endogenous hormones of trifoliate orange under salt stress. Journal of Animal and Plant Sciences, 2019, 29(1):245-250

  60. Wu QS*, Shao YD, Gao XB, Xia TJ, Kuca K. Characterization of AMF-diversity of endosphere versus rhizosphere of tea (Camellia sinensis) crops. Indian Journal of Agricultural Sciences, 2019, 89(2):348-352

  61. Zou YN, Zhang DJ, Liu CY, Wu QS*. Relationships between mycorrhizae and root hairs. Pakistan Journal of Botany, 2019, 51(2):727-733

  62. Lü LH, Zou YN, Wu QS*. Mycorrhizas mitigate soil replant disease of peach through regulating root exudates, soil microbial population, and soil aggregate stability. Communications in Soil Science and Plant Analysis, 2019, 50(7):909-921

  63. Wu QS, He JD, Srivastava AK, Zhang F, Zou YN. Development of propagation technique of indigenous AMF and their inoculation response in citrus. Indian Journal of Agricultural Sciences, 2019, 89(7):1190-1194.

  64. Shao YD, Zhang DJ, Hu XC, Wu QS*, Jiang CJ*, Gao XB, Kuca K. Arbuscular mycorrhiza improves leaf food quality of tea plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47(3):608-614